Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
J. appl. oral sci ; 31: e20230009, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1440421

ABSTRACT

Abstract Objectives The mid-palatal expansion technique is commonly used to correct maxillary constriction in dental clinics. However, there is a tendency for it to relapse, and the key molecules responsible for modulating bone formation remain elusive. Thus, this study aimed to investigate whether signal transducer and activator of transcription 3 (STAT3) activation contributes to osteoblast-mediated bone formation during palatal expansion and relapse. Methodology In total, 30 male Wistar rats were randomly allocated into Ctrl (control), E (expansion only), and E+Stattic (expansion plus STAT3-inhibitor, Stattic) groups. Micro-computed tomography, micromorphology staining, and immunohistochemistry of the mid-palatal suture were performed on days 7 and 14. In vitro cyclic tensile stress (10% magnitude, 0.5 Hz frequency, and 24 h duration) was applied to rat primary osteoblasts and Stattic was administered for STAT3 inhibition. The role of STAT3 in mechanical loading-induced osteoblasts was confirmed by alkaline phosphatase (ALP), alizarin red staining, and western blots. Results The E group showed greater arch width than the E+Stattic group after expansion. The differences between the two groups remained significant after relapse. We found active bone formation in the E group with increased expression of ALP, COL-I, and Runx2, although the expression of osteogenesis-related factors was downregulated in the E+stattic group. After STAT3 inhibition, expansive force-induced bone resorption was attenuated, as TRAP staining demonstrated. Furthermore, the administration of Stattic in vitro partially suppressed tensile stress-enhanced osteogenic markers in osteoblasts. Conclusions STAT3 inactivation reduced osteoblast-mediated bone formation during palatal expansion and post-expansion relapse, thus it may be a potential therapeutic target to treat force-induced bone formation.

2.
Braz. oral res. (Online) ; 33: e0045, 2019. tab, graf
Article in English | LILACS | ID: biblio-1019594

ABSTRACT

Abstract The aim of this study was to investigate the effects of low-intensity pulsed ultrasound (LIPUS) on the osteogenic differentiation of dental follicle cells (DFCs) in vitro and on the regenerative effects of DFC-OsteoBoneTM complexes in vivo. DFCs were isolated and characterized. In the in vitro study, DFCs were cultured in an osteogenic medium in the presence or absence of LIPUS. The expression levels of ALP, Runx2, OSX, and COL-I mRNA were analyzed using real-time polymerase chain reaction (RT-PCR) on day 7. Alizarin red staining was performed on day 21. The state of the growth of the DFCs that were seeded on the scaffold at 3, 5, 7, and 9 days was detected by using a scanning electron microscope. In our in vivo study, 9 healthy nude mice randomly underwent subcutaneous transplantation surgery in one of three groups: group A, empty scaffold; group B, DFCs + scaffold; and group C, DFCs + scaffold + LIPUS. After 8 weeks of implantation, a histological analysis was performed by HE and Mason staining. Our results indicate that LIPUS promotes the osteogenic differentiation of DFCs by increasing the expression of the ALP, Runx2, OSX, and COL-I genes and the formation of mineralized nodules. The cells can adhere and grow on the scaffolds and grow best at 9 days. The HE and Mason staining results showed that more cells, fibrous tissue and blood vessels could be observed in the DFCs + scaffold + LIPUS group than in the other groups. LIPUS could promote the osteogenic differentiation of DFCs in vitro and promote tissue regeneration in a DFCs-scaffold complex in vivo. Further studies should be conducted to explore the underlying mechanisms of LIPUS.


Subject(s)
Animals , Osteogenesis/radiation effects , Ultrasonic Therapy/methods , Bone Regeneration/radiation effects , Dental Sac/cytology , Ultrasonic Waves , Time Factors , Microscopy, Electron, Scanning , Random Allocation , Ceramics , Reproducibility of Results , Rats, Sprague-Dawley , Dental Sac/radiation effects , Real-Time Polymerase Chain Reaction , Flow Cytometry , Mice, Nude
SELECTION OF CITATIONS
SEARCH DETAIL